Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chemosensors ; 10(7):254, 2022.
Article in English | MDPI | ID: covidwho-1917308

ABSTRACT

As a consequence of the progress of the global vaccination against the COVID-19 disease, fast, accurate and affordable assays are needed for monitoring the efficiency of developing immunity against the coronavirus at the population level. In this context, we herewith report the proof-of-concept development of an innovative bioelectric biosensor for the ultra-detection (in less than three minutes) of IgG antibodies against the SARS-CoV-2 S1 spike antigen. The biosensor comprises a disposable set of screen-printed electrodes upon which are immobilized cells engineered to bear the S1 protein on their surface. When anti-S1 antibodies are presented to the engineered cell population, a rapid, specific, and selective change of the cell membrane potential occurs;this is in turn recorded by a bespoke portable potentiometer. End results are communicated via Bluetooth to a smartphone equipped with a customized user interface. By using the novel biosensor, anti-S1 antibodies could be detected at concentrations as low as 5 ng/mL. In a preliminary clinical trial, positive results were derived from patients vaccinated or previously infected by the virus. Selectivity over other respiratory viruses was demonstrated by the lack of cross-reactivity to antibodies against rhinovirus. After further clinical validation and extension to also screen IgM, IgA and possible neutralizing antibodies, our approach is intended to facilitate the mass and reliable detection of antibodies in the early stages following vaccination and to monitor the duration and level of acquired immunity both in a clinical and self-testing environment.

2.
Chemosensors ; 9(12):341, 2021.
Article in English | MDPI | ID: covidwho-1554916

ABSTRACT

Antigen screening for the SARS-CoV-2 S1 spike protein is among the most promising tools for the mass monitoring of asymptomatic carriers of the virus, especially in limited resource environments. Herewith, we report on the possible use of the angiotensin-converting enzyme 2 (ACE2), the natural receptor and entry point of the virus, as a biorecognition element for the detection of the S1 antigen combined with an established bioelectric biosensor based on membrane-engineered cells. The working principle of our approach is based on the measurable change of the electric potential of membrane-engineered mammalian cells bearing ACE2 after attachment of the respective viral protein. We demonstrate that sensitive and selective detection of the S1 antigen is feasible in just three min, with a limit of detection of 20 fg/mL. In a preliminary clinical application, positive patient-derived samples were identified with a 87.9% score compared to RT-PCR. No cross-reactivity was observed against a wide range of nucleocapsid protein concentrations. The novel biosensor is embedded in a commercially ready-to-use testing platform, complete with the consumable immobilized cell–electrode interface and a portable read-out device operable through smartphone or tablet. In addition, the possible application of the system for the high throughput screening of potential pharmacological inhibitors of the ACE2 receptor-S1 RBD interaction is discussed.

3.
Sensors (Basel) ; 20(11)2020 May 31.
Article in English | MEDLINE | ID: covidwho-1374488

ABSTRACT

One of the key challenges of the recent COVID-19 pandemic is the ability to accurately estimate the number of infected individuals, particularly asymptomatic and/or early-stage patients. We herewith report the proof-of-concept development of a biosensor able to detect the SARS-CoV-2 S1 spike protein expressed on the surface of the virus. The biosensor is based on membrane-engineered mammalian cells bearing the human chimeric spike S1 antibody. We demonstrate that the attachment of the protein to the membrane-bound antibodies resulted in a selective and considerable change in the cellular bioelectric properties measured by means of a Bioelectric Recognition Assay. The novel biosensor provided results in an ultra-rapid manner (3 min), with a detection limit of 1 fg/mL and a semi-linear range of response between 10 fg and 1 µg/mL. In addition, no cross-reactivity was observed against the SARS-CoV-2 nucleocapsid protein. Furthermore, the biosensor was configured as a ready-to-use platform, including a portable read-out device operated via smartphone/tablet. In this way, we demonstrate that the novel biosensor can be potentially applied for the mass screening of SARS-CoV-2 surface antigens without prior sample processing, therefore offering a possible solution for the timely monitoring and eventual control of the global coronavirus pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/isolation & purification , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Humans , Limit of Detection , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Smartphone , Spike Glycoprotein, Coronavirus/chemistry
4.
Biosensors (Basel) ; 11(7)2021 Jul 06.
Article in English | MEDLINE | ID: covidwho-1302155

ABSTRACT

The availability of antigen tests for SARS-CoV-2 represents a major step for the mass surveillance of the incidence of infection, especially regarding COVID-19 asymptomatic and/or early-stage patients. Recently, we reported the development of a Bioelectric Recognition Assay-based biosensor able to detect the SARS-CoV-2 S1 spike protein expressed on the surface of the virus in just three minutes, with high sensitivity and selectivity. The working principle was established by measuring the change of the electric potential of membrane-engineered mammalian cells bearing the human chimeric spike S1 antibody after attachment of the respective viral protein. In the present study, we applied the novel biosensor to patient-derived nasopharyngeal samples in a clinical set-up, with absolutely no sample pretreatment. More importantly, membrane-engineered cells were pre-immobilized in a proprietary biomatrix, thus enabling their long-term preservation prior to use as well as significantly increasing their ease-of-handle as test consumables. The plug-and-apply novel biosensor was able to detect the virus in positive samples with a 92.8% success rate compared to RT-PCR. No false negative results were recorded. These findings demonstrate the potential applicability of the biosensor for the early, routine mass screening of SARS-CoV-2 on a scale not yet realized.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Cell Line , Early Diagnosis , Humans , Limit of Detection , Nasopharynx/immunology , Nasopharynx/virology , Population Surveillance , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL